Теплопроводность металлов показатели нормы для стали, меди, никеля и алюминия

Теплопроводность металлов и сплавов, коэффициент теплопроводности

Среди большого количества параметров, характеризующие металлы существует и такое понятие как теплопроводность. Ее значение сложно переоценить. Этот параметр применяют при расчете деталей и узлов. Например, шестеренчатых передач. Вообще теплопроводностью занимается целый раздел науки под названием термодинамика.

Что такое теплопроводность и термическое сопротивление

Теплопроводность металлов можно охарактеризовать так – это способность материалов (газ, жидкость и пр.) переносить излишнюю тепловую энергию от разогретых участков тела к холодным. Перенос осуществляется свободно движущимися элементарными частицами, в число которых входят атомы электроны и пр.

Сам процесс теплообмена происходит в любых телах, но способ переноса энергии во многом зависит от агрегатного состояния тела.

Кроме этого теплопроводности можно дать еще одно определение – это количественный параметр возможности тела проводить тепловую энергию. Если сравнивать тепловые и электрические сети, то это понятие аналогично электрической проводимости.

Способность физического тела не допускать распространение теплового колебания молекул называют тепловым сопротивлением. Кстати, некоторые, искренне заблуждаются, путая это понятие с теплопроводностью.

Понятие коэффициента теплопроводности

Коэффициентом теплопроводности называют величину, которая равна количеству теплоты, переносимого через единицу поверхности за одну секунду.
Теплопроводность металла была установлена еще в 1863 году. Именно тогда было доказано то, что за передачу теплоты отвечают свободные электроны, которых в металле великое множество. Именно поэтому коэффициент теплопроводности металлов значительно выше, чем у диэлектрических материалов.

От чего зависит показатель теплопроводности

Теплопроводность – это физическая величина и по большей части зависит от параметров температуры, давления и типа вещества. Большая часть коэффициентов определяется опытным путем. Для этого разработано множество методов. Результаты сводятся в справочные таблицы, которые потом используются при проведении различных научных и инженерных расчетов.
Тела обладают разной температурой и при тепловом обмене она (температура) будет распределяться неравномерно. Другими словами необходимо знать, как зависит коэффициент теплопроводности от температуры.

Многочисленные опыты показывают то, что у многих материалов связь между коэффициентом и самой теплопроводностью является линейной.

Теплопроводность металлов обусловлена формой его кристаллической решетки.

Во многом коэффициент теплопроводности зависит от строения материала, размеров его пор и влажности.

Когда учитывается коэффициент теплопроводности

Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий и пр. В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения. Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.

Схема утепления деревянного дома

Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр.).

Показатели для стали

  • В справочных материалах по теплопроводности различных материалов особое место занимают данные, представленные о сталях разных марок.
    Так, в справочных материалах собраны экспериментальные и расчетные данные следующих типов стальных сплавов:
    стойких к воздействию коррозии, повышенной температуры;
  • предназначенных для производства пружин, режущего инструмента;
  • насыщенных легирующими добавками.

В таблицах сведены показатели, которые были собраны для сталей в температурном диапазоне от -263 до 1200 градусов.
Усредненные показатели составляют для:

  • углеродистых сталей 50 – 90 Вт/(м×град);
  • коррозионностойких, жаро- и теплостойких сплавов, относящимся к мартенситным — от 30 до 45 Вт/(м×град);
  • сплавов, относящимся к аустенитным от 12 до 22 Вт/(м×град).

В этих справочных материалах размещена информация и свойствах чугунов.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Во время проведения расчетов связанных с цветными металлами и сплавами проектировщики применяют справочные материалы, размещенные в специальных таблицах.

Таблица теплопроводности алюминиевых сплавов

В них представлены материалы о теплопроводности цветных металлов и сплавов, кроме этих данных указана информация о химическом составе сплавов. Исследования проводили при температурах от 0 до 600 °С.

По информации собранной в этих табличных материалах видно то, что к цветным металлам, обладающим высокой теплопроводностью сплавы на основе магния и никель. К металлам, у которых низкая теплопроводность относят нихром, инвар и некоторые другие.

У большинства металлов хорошая теплопроводность, у одних она больше, у других меньше. К металлам с хорошей теплопроводностью относят золото, медь и некоторые другие. К материалам с низкой теплопроводностью относят олово, алюминий и пр.

Читайте также:  Как в Навител проложить маршрут

Таблица теплопроводности сплавов никеля

Высокая теплопроводность может быть и достоинством, и недостатком. Все зависит от сферы применения. К, примеру, высокая теплопроводность хороша для кухонной посуды. Материалы с низкой теплопроводностью применяют для создания неразъемных соединений металлических деталей. Существуют целые семейства сплавов, выполненных на основе олова.

Недостатки высокой теплопроводности меди и ее сплавов

Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами.
Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев.
Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ.
Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.

Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов.
Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер.
Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Влияние концентрации углерода

Стали с малым содержанием углерода обладают высокими показателями теплопроводности. Именно поэтому материалы этого класса применяют для изготовления труб и арматуры для нее. Теплопроводность сталей этого типа лежит в диапазоне 47-54 Вт/(м× К).

Значение в быту и производстве

Применение теплопроводности при строительстве

У каждого материала имеется свой показатель теплопроводности. Чем ее значение ниже, тем, соответственно ниже уровень теплообмена между внешней и внутренней средой. Это означает то, что в здании, сооруженном из материала с низкой теплопроводностью, зимой будет тепло, а летом прохладно.

Тепловые потери по швам панельного дома

При сооружении различных зданий, в том числе и жилые здания, без знаний о теплопроводности стройматериалов не обойтись. При проектировании строительных сооружений необходимо учитывать данные о свойствах таких материалов как – бетон, стекло, минеральная вата и многих других. Среди них предельная теплопроводность принадлежит бетону, между тем, у древесины она в 6 раз меньше.

Системы отопления

Ключевая задача любой отопительной системы – это перенос тепловой энергии от теплоносителя в помещения. Для такого обогрева применяют батареи или радиаторы отопления. Они необходимы для передачи тепловой энергии в помещения.

  • Радиатор отопления – это конструкция внутри, которой перемещается теплоноситель. К основным характеристикам этого изделия относят:
    материал, из которого оно изготовлено;
  • вид конструкции;
  • размеры, в том числе и количество секций;
  • показатели теплоотдачи.

Именно теплоотдача и есть ключевой параметр. Все дело в том, что определяет объем энергии, которое передается от радиатора в помещение. Чем больше этот показатель, тем ниже будут потери тепла.
Существуют справочные таблицы, определяющие материалы, оптимальные для использования в отопительных системах. Из данных, которые в них размещены, становится ясно, что самым эффективным материалом считается медь. Но, вследствие ее высокой цены и определенных технологических сложностей, связанных с обработкой меди их применяемость не так высока.

Именно поэтому все чаще применяют модели, изготовленные из стальных или алюминиевых сплавов. Нередко применяют и сочетание различных материалов, например, стали и алюминия.
Каждый изготовитель радиаторов, при маркировке готовых изделий должен указывать такую характеристику, как мощность тепловой отдачи.
На рынке отопительных систем можно приобрести радиаторы, изготовленные из чугуна, стали, алюминия и биметалла.

Читайте также:  Проживание в Таиланде; ЛИСА РУЛИТ

Методы изучения параметров теплопроводности

При проведении изучения параметров теплопроводности надо помнить о том, что характеристики конкретного металла или его сплавов от метода его выработки. Например, параметры металла полученного с помощью литья могут существенно отличаться от характеристик материала изготовленного по методам порошковой металлургии. Свойства сырого металла коренным образом отличаются от того, который прошел через термическую обработку.

Термическая нестабильность, то есть преобразование отдельных свойств металла после воздействия высоких температур является общим для практически всех материалов. Как пример можно привести то, что металлы после длительного воздействия разных температур способны достичь разных уровней рекристаллизации, а это отражается на параметрах теплопроводности.

Структура стали после термической обработки

Можно сказать следующее – при проведении исследований параметров теплопроводности необходимо использовать образцы металлов и их сплавов в стандартном и определенном технологическом состоянии, например, после термической обработки.

Например, существуют требования по измельчению металла для проведения его исследований с применением способов термического анализа. Действительно, такое требование существует при проведении ряда исследований. Бывает и такое требование – как изготовление специальных пластин и многие другие.

Нетермостабильность металлов ставит ряд ограничений использование теплофизических способов исследования. Дело в том, что этот способ проведения исследований требует нагревать образцы не менее двух раз, в определенном температурном интервале.

Один из методов называют релакционно-динамическим. Он предназначен для выполнения массовых измерений теплоемкости у металлов. В этом методе фиксируется переходная кривая температуры образца между его двумя стационарными состояниями. Этот процесс является следствием скачка тепловой мощности вводимой в испытуемый образец.

Такой метод можно назвать относительным. В нем используются испытуемый и сравнительный образцы. Главное заключается в том, что бы у образцов была одинаковая излучающая поверхность. При проведении исследований температура, воздействующая на образцы должна изменяться ступенчато, при этом по достижении заданных параметров необходимо выдержать определенное количество времени. Направление изменения температуры и ее шаг должен быть подобран таким образом, что бы образец, предназначенный для испытаний, прогревался равномерно.

В эти моменты тепловые потоки сравняются и отношение теплопередачи будет определяться как разность скоростей колебаний температуры.
Иногда в процессе этих исследований источник косвенного подогрева исследуемого и сравнительного образца.
На один из образцов могут быть созданы дополнительные тепловые нагрузки в сравнении со вторым образцом.

Какой метод измерения теплопроводности лучше всего подходит для вашего материала?

Существуют методы измерения тепловодности, такие как LFA, GHP, HFM и TCT. Они отличаются друг от друга размерами и геометрическими параметрами образцов, применяемых для проверки теплопроводности металлов.

Эти сокращения можно расшифровать как:

  • GHP (метод горячей охранной зоны);
  • HFM (метод теплового потока);
  • TCT (метод горячей проволоки).

Вышеуказанные способы применяют для определения коэффициентов различных металлов и их сплавов. Вместе с тем с использованием этих методов, занимаются исследованием других материалов, например, минералокерамики или огнеупорных материалов.

Образцы металлов, на которых проводят исследования, имеют габаритные размеры 12,7×12,7×2.

Теплоотдача расплавленных металлов

Теплоотдача расплавленных металлов

  • Жидкометаллический теплоноситель обеспечивает высокую прочность процесса теплопередачи и может использоваться при повышенных температурах без повышения давления в системе. Физические свойства расплавленного металла существенно отличаются от свойств обычных теплоносителей. Жидкий металл характеризуется высокой теплопроводностью и низкой теплоемкостью. Критерий Прандтля для такого хладагента значительно меньше 1. Экспериментальные исследования теплообмена в жидких металлах показали, что скорость теплообмена зависит от загрязнения металла оксидом и смачиваемости подлежащей обработке поверхности.

При технических расчетах вычисление интеграла в уравнении (7-18) или (7-19) несколько утомительно. Людмила Фирмаль

В случае чистого расплавленного металла (без оксидов) смачиваемость поверхности незначительно влияет на тепловую прочность transfer. In наличие оксидов, теплопередача на несмокших поверхностях не сильнее, чем на влажных поверхностях. Это, очевидно, связано с тем, что оксиды легче осаждаются на поверхности, которые менее подвержены смачиванию, что повышает тепловое сопротивление. Экспериментальные и теоретические исследования теплообмена расплавленного металла показали, что вместо эталонных Pe и Pr в уравнение подобия удобнее ввести эталон Pe = KePr.

  • Результаты экспериментального исследования теплообмена жидких металлов в турбулентных потоках в трубах описаны следующим образом уравнение подобия. Для оксидов металлов высокой чистоты, подвергающихся надежному смачиванию стенок труб Н2 = 4.8 + 0.014 Фе? а. (7.25 )) Если происходит загрязнение металла и поверхность теплообмена не влажная N ^ = 3,3 + 0,014 Fe», г.

В некоторых технических приложениях чаще задается 230 , тепловой поток на поверхности пластины, нем температура стенки. Людмила Фирмаль

Эти уравнения: Pe> 10*, Pe = 2 * 10a—2•10*, Pr = 4 * 10 — ⁸ −3 * 10-действительны для ’и y> 30.Для короткой трубы коэффициент теплопередачи следует умножить на аналогичную формулу, поправочный датчик Е, который определяется уравнением В этой главе описывается процесс, при котором силы инерционной массы и гравитационной массы оказывают существенное влияние на интенсивность теплопередачи.

  • Примеры решения задач по теплотехнике
Аналитический метод расчета теплоотдачи в трубе Активное и консервативное воздействия массовых сил на поток
Результаты экспериментального исследования теплоотдачи в трубах и каналах Дополнительное условие подобия потоков в полях массовых сил
Читайте также:  Оценка производительности автопоезда с полуприцепом

Обо мне

Как заказать?

Отзывы

Супер!
Присылайте в whatsapp:

+79219603113

Если у вас установлен whatsapp, нажмите:

Написать сообщение

Если whatsappа нет, установите и добавьте меня, вот инструкция.

f9219603113@gmail.com

Режим работы с 07:00 утра до 24:00 ночи (часовой пояс Москва)

Образовательный сервис позволяющий получить дополнительные знания


Если не указано иное, контент на этом сайте лицензирован под международной лицензией Creative commons attribution 4.0

© 2000 – 2019 ИП «Фирмаль Людмила Анатольевна»

Все авторские права на размещённые материалы сохраняются за правообладателями. Любое коммерческое и другое использование кроме предварительного ознакомления запрещено. Публикация предоставленных материалов не преследует за собой коммерческой выгоды. Публикация являются рекламой бумажных изданий этих документов. Я оказываю услуги по сбору, компоновке и обрабатыванию информации по теме заданной мне Клиентом. Результат работы не будет готовым научным трудом, но может быть источником для его самостоятельного изучения и написания.

Теплопроводность цветных металлов, теплоемкость и плотность сплавов

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).
Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.
Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки (при 18ºС)

В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.
Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.
Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).
Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС.
Размерность теплоемкости кал/(г·град).
Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре.
Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10 -3 . Не забудьте умножить на 1000!
Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м 3 .

  1. Михеев М. А., Михеева И. М. Основы теплопередачи.
  2. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
  3. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
  4. Шелудяк Ю. Е., Кашпоров Л. Я. и др. Теплофизические свойства компонентов горючих систем. М.: 1992. — 184 с.
  5. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
Ссылка на основную публикацию
Телеграм бот по номеру авто — поиск сведений об владельце
Проверка авто по номеру двигателя в ГИБДД бесплатно Любой автомобиль определяется по номеру кузова и двигателя. На основании этой информации...
Таблетки Персен инструкция по применению, цена, отзывы врачей, состав и аналоги
Как применять персен форте инструкция по применению препарата, отзывы об успокоительных таблетках Пе Персен — это комбинированный медикамент растительного происхождения,...
Таблица вывода алкоголя из организма для водителя сколько времени нужно для отрезвления
Сколько держится алкоголь в крови и как выводится из организма В автомобильном мире существует проблема принятия алкогольных напитков. Автолюбители всех...
Телематический модуль StarLine M31 (Старлайн М31) с установкой в Доп-Центре, доступная цена, опытные
GSM модуль для Starline A91, доводчик стекол дооснащение дополнительными модулями Автосигнализация starline a91, разработанная и выпускаемая отечественным научно-производственным объединением СтарЛайн,...
Adblock detector