Температура плавления алмаза точное значение параметра

Металлы с самыми низким температурами плавления топ-10

Привычным стереотипом является, что металл – это обязательно нечто тяжёлое, прочное, блестящее. Из металлов делают инструменты и механизмы, оружие и украшения. Металлы используют для защиты от непогоды и хранения пищи. Даже в язык проник стереотип — фраза «возьми какую-нибудь железяку» имеет вполне конкретный и ёмкий смысл.

Однако, твёрдые, прочные и жаростойкие далеко не все металлы. И вещества, такие как натрий, галлий, ртуть — находят необычные применения.

Сегодня, поговорим о десяти металлах с самыми низкими температурами плавления.

10. Олово (231°C)


Химический элемент, занимающий в периодической таблице юбилейное, пятидесятое место известен человечеству с древнейших времён. Первые капли олова (латинское наименование Stannum) первобытные люди заметили в своих кострах ещё за 4 тысячи лет до нашей эры. Немудрено — ведь олово плавится при температуре всего при 231°C. При этом дерево ещё только-только начинает обугливаться и робко гореть.

После застывания «слёзы», которыми плакал в огне красивый тяжёлый камень кассидерит, сохраняли форму, в которой им довелось застыть. Так появились первые металлические предметы кухонного быта.

Когда же удалось вытопить из зелёного малахита рыжую медь, оказалось, что смесь меди с оловом гораздо прочнее любого из металлов по отдельности. Тут-то цивилизация и начала бурно развиваться. Оружие, доспехи, посуда, инструменты — всё делали из прочной и красивой бронзы.

9. Литий (180°C)


Этот удивительный металл, открыли только в начале XIX века. Литий (Lithium, элемент №3) довольно легкоплавкий — жидкий метал температуры всего 180°C можно помешивать даже деревянной ложечкой.

Литий отличается очень малой плотностью — вдвое легче воды! Металл относится к группе щелочных и довольно активен химически (поэтому его так долго не могли открыть).

В современном мире литий широко используется для создания удивительных сплавов — твёрдых, лёгких и жаропрочных.
Без лития не обходится ни одна современная электронная штучка. Ведь литий является ключевым компонентом компактных и ёмких аккумуляторов. А ещё, именно литий придаёт замечательный алый цвет фейерверкам.

8. Индий (157°C)


В конце XIX века химикам удалось открыть и выделить в чистом виде элемент, занявший в периодической таблице клетку №49. Индий (Indium) — довольно тяжёлый (почти как железо) металл, плавящийся при 157°C.

Этот материал поразительно мягок и пластичен. Мягче этого металла только тальк! Невероятное свойство сделало индий незаменимым в радиоэлектронике. Тонкие индиевые полоски, нанесённые на стекло, хорошо проводят электрический ток — но при этом совершенно прозрачны. Так делают уже привычные нам плоские экраны на основе «жидких кристаллов» (LCD).

7. Натрий (97,8°C)


Натрий (Natrium, 11-й элемент) может расплавиться даже в кипятке — 97,8°C. Но мы бы не советовали позволить даже маленькому кусочку натрия упасть в воду (хотя бы и ледяную). Щелочной металл натрий очень активен химически и немедленно реагирует, отделяя от молекул воды водород и превращаясь в сильнейшую щелочь.

При этом выделяется много тепла, которое тут же поджигает освободившийся водород. Взрыв и пожар! Такие материалы как натрий хранят в керосине, что исключает их контакт с водой и влагой воздуха.

Читайте также:  Новый Infiniti QX70 2019 фото, цена, характеристики

Как очень активный элемент, натрий в том или ином виде присутствует вокруг нас в огромных количествах. Взять хотя бы хлорид натрия — обычная поваренная соль.

6. Калий (63,5°C)


Близкий родственник натрия — калий. Элемент №19 (Kalium) также бурно реагирует с водой, образуя щёлочь, и также легкоплавок — 63,5°C. А вот съедобных соединений калия почти нет, и в этом он полная противоположность натрию. Хотя в ограниченно малых количествах организму всё-таки необходим (микроэлемент).

В чистом виде калий практического применения не имеет. Но его многочисленные соединения с древних времён известны как удобрения, моющие средства, важные компоненты многих химических процессов.

5. Рубидий (39,31°C)


37-й элемент таблицы — рубидий (Rubidium) плавится всего при 39,31°C. Кусочек рубидия может растаять на блюдце как сливочное масло. Это лёгкий металл, его плотность лишь немного превышает плотность воды. Но реагирует с водой рубидий не менее бурно, чем его близкие родственники калий и натрий.

Рубидий удивителен своими химическими свойствами. Сам по себе щелочной металл очень легко вступает в разнообразные химические реакции. Но при этом соли рубидия и его сплавы с другими металлами являются хорошими катализаторами реакций. То есть, значительно ускоряют процесс, при этом совершенно не расходуясь сами по себе. Это делает рубидий ценным материалом для химической промышленности и радиоэлектроники.

4. Цезий (28,5°C)


Очень мягкий серебристый металл буквально плавится в руках. При температуре 28,5°C цезий (Caesium) становится жидкостью и буквально утекает между пальцев. Но не вздумайте провести такой опыт! Из всех щелочных металлов элемент №55 самый химически активный (уступая лишь францию).

На открытом воздухе цезий моментально окисляется, образуя яркое пламя. А при попадании в воду просто взрывается. Цезий ухитряется поджечь даже лёд! Более того, образовавшийся при реакции с водой гидроксид цезия разъедает стекло — и потихоньку грызёт сосуды из золота и даже платины.

А вот в электронике такая активность цезия позволяет делать очень чувствительные фотоэлементы и часы поистине космической точности.

3. Франций (27°C)


Элемент, занимающий 89-ю ячейку периодической таблицы — франций (Francium) — очень похож на цезий. Франций плавится при 27°C, но до этого неимоверно активный щелочной металл ещё требуется сберечь.

Мало того, что франций бурно реагирует буквально со всем подряд — он ещё и очень радиоактивен! Буквально через полчаса от килограмма франция останется — хорошо если горстка — разнообразных сильно излучающих продуктов деления.

Впрочем, в таких количествах его никто никогда и не видел. Неудивительно, что в природе этот элемент один из самых редко встречающихся. Да и практического применения ему так и не нашлось.

2. Галлий (26,79°C)


А вот серебристый металл галлий (Gallium — ещё до открытия элемента Д.И. Менделеев заранее оставил ему в таблице клеточку № 31) встречается гораздо чаще и нередко применяется просто для забав. Плавится он почти как цезий, при 26,79°C, но в остальном разительно отличается от своего «нервного» братца.

Внешне и по механическим свойствам галлий очень похож на алюминий. Лёгок, теплопроводен, в чистом виде довольно хрупок. Мгновенно образующаяся на воздухе плотная плёнка окислов так же хорошо защищает его от разрушения.

В чистом виде галлий практически не находит применения. А вот его соли и, особенно, легкоплавкие сплавы нашли широчайшее применение в ядерной физике, радиоэлектронике, измерительной технике.

1. Ртуть (-38,87°C)


Все мы хорошо знакомы со ртутью — даже сегодня, в век электроники, вряд ли найдётся хоть один человек, которому не измеряли бы температуру тела ртутным термометром. Но мало кто задумывается, что очень текучая тяжёлая серебристая жидкость — самый настоящий металл!

Читайте также:  Новинки авто 2019 года на российском рынке какие автомобили нас ждут

Да-да, элемент №80, Hydrargyrum, плавится на самом лютом морозе — температура кристаллизации ртути почти минус сорок градусов (-38,87°C).

Человечество знакомо со ртутью с древнейших времён. Ртуть находит широчайшее применение в технике, химии, металлургии. Этот элемент достоин отдельного, немаленького рассказа — а сегодня он гордо венчает наш рейтинг.

При какой температуре плавится алмаз

Алмаз — драгоценный камень, но его свойства физики оценили по достоинству только в XVI веке. И это несмотря на то что камень был найден несколькими столетиями раньше. Конечно, чтоб оценить всю значимость минерала, потребовалось провести немало опытов.

Они дали информацию о том, какая твердость у камня, температура плавления алмаза, а также другие физические характеристики. Но с тех пор камень используют не только в качестве красивого аксессуара, но еще и в промышленных целях.

11 ГПа. На воздухе алмаз сгорает при 850—1000 °C, а в струе чистого кислорода горит слабо-голубым пламенем при 720—800 °C, полностью превращаясь в углекислый газ.

Оценка проводилась в специальных лабораториях. И в результате был выяснен химический состав алмаза, строение его кристаллической решетки, а также открыто несколько феноменов.

Опыты, связанные с температурой плавления

Как известно, кристаллическая решетка вещества имеет форму тетраэдра с ковалентными связями между атомами углерода. Возможно, что именно такая структура стала причиной нескольких открытий, связанных с плавлением алмаза.

Энциклопедии минералов дают показатели плавления алмазов 3700-4000 градусов по Цельсию. Но это не совсем точная информация, поскольку они не поддаются общепринятым закономерностям.

В частности, во время плавления были обнаружены такие эффекты:

  • Используя высокие температуры (2000 градусов Цельсия без доступа кислорода), алмаз можно превратить в графит. При этом дальнейшее поведение этого вещества с повышением температуры не поддается логическому объяснению. А вот процесс в обратную сторону произвести невозможно. В крайнем случае можно получить синтетический камень, кристаллическая решетка которого будет отличаться от природных алмазов.
  • Если же нагревать камень до температуры 850-1000 градусов по Цельсию, он превращается в углекислый газ, то есть исчезает без следа. Такой опыт провели в 1694 году исследователи из Италии Тарджони и Аверани, пытаясь расплавить камни и соединить их в один алмаз.
  • Исследования проводились и в 2010 году в Калифорнии, где группа физиков сделала вывод, что добиться плавления алмаза невозможно, если постепенно повышать температуру камня. Чтоб выяснить показатель плавления, необходимо, кроме температуры, воздействовать на алмаз давлением, а это затрудняет измерение. Чтоб действительно перевести алмаз в жидкое состояние, ученым потребовалось приложить немало усилий.

Для этого они использовали импульсы лазера, которые действовали на камень несколько наносекунд. При этом камень в жидком виде был получен при давлении, в 40 миллионов раз превосходящем атмосферное на уровне моря.

Кроме того, если давление понижалось до 11 миллионов атмосфер, а температура при этом на поверхности минерала была 50 тысяч Кельвинов, то на камне появлялись твердые кусочки. Они не тонули в остальной жидкости и внешне напоминали кусочки льда.

При дальнейшем понижении показателя давления, кусочки скапливались, образовывая «айсберги» на плаву. Ученые сопоставили, что так ведет себя углерод в составе планет Нептуна и Урана, на поверхности этих небесных тел тоже существуют океаны с жидким алмазом. Но чтоб доказать это предположение, необходимо отправить спутники к планетам, что на сегодняшний момент невозможно быстро осуществить.

  • Если действовать на камень короткими световыми импульсами в ультрафиолетовом диапазоне, то в минерале появятся небольшие углубления. Таким образом эксперимент подтверждает исчезновение камня под действием мощного ультрафиолета, то есть превращения алмаза в углекислый газ.
Читайте также:  Полировка фар своими руками - обучение и рекомендации

Поэтому ультрафиолетовые лазеры на основе алмаза быстро ломаются и становятся непригодными к использованию. Но не следует переживать по поводу того, что бриллиант на украшении исчезнет со временем: чтоб удалить один микрограмм минерала, придется держать алмаз под ультрафиолетом около 10 миллиардов лет.

Забытая реальность

вспомним прошлое, вернемся к истокам

Плавить камень легко, и многие это делали.

Загадочная усадьба; уксус и уголь, какая связь? https://youtu.be/flcIJfvvNJQ

Где брали цемент для строек Руси? https://youtu.be/8qNiAE1JRKM

Провал грунта в Дедилово открыл тайны прошлого https://youtu.be/fDxm3xZTMIM

Волгодонский канал не строили, а откапывали! https://youtu.be/ZPHGDIRCzJA

В сточной канаве нашли артефакт промышленности Руси https://youtu.be/DTHj5yBxeEg

Как изменить своё отношение к язычникам за 14 минут. https://youtu.be/EBA3EkjMSzM
___
В ролике про полигональную кладку я вам немного рассказывал про современную плавку базальта.
Подписчики написали, что было бы интересно услышать об этом, и сегодня я хочу рассказать вам о том, как плавят камень в наши дни.
КАМЕНЬ ЗАМЕНИТ СТАЛЬ
НО КОГДА?

Промышленная петрургия, или каменное литье, не новое слово в истории отечественного литейного производства. Еще в конце XVI века в России отливали каменные ядра, брусчатку для мостовой. Одно из этих производств в Нижнем Тагиле сохранилось до сих пор.
Второе рождение петрургии выпало на первые годы развития «большой химии», которая потребовала новые материалы, способные противостоять агрессивной среде. «Петрургия – фундамент большой химии» – под такими заголовками в начале 60-х годов в газетах мелькали статьи о совершенно новом направлении в индустрии стройматериалов, способном в корне изменить привычные представления о надежности и долговечности конструкций.

Из журнала «Изобретатель и рационализатор», 1962, № 2 (С. 8–9).

ПЕТРУРГИЯ – ЧТО ВЫ ОБ ЭТОМ ЗНАЕТЕ?

Естественный камень базальт – отличный строительный материал. Его знали и любили еще строители древнего Египта, Рима, Византии. И для современных архитекторов камень – гранит и мрамор – наиболее благородный и долговечный материал. A что если камень расплавить? Подобно тому, как внутренний жар планеты выливает, выплескивает жидкий камень – лаву из жерлов вулканов, так и нам расплавить камень в печах и вылить его в литейную форму. Какой материал, с какими качествами мы при этом получим?
Основателем советской камнелитейной промышленности является академик Ф.Ю. Левинсон-Лессинг – геолог, исследователь вулканов. В 1926 году были начаты экспериментальные работы, завершившиеся в 1932 году пуском Московского камнелитейного завода. Так родилась новая наука и новая отрасль техники – петрургия.
Петрургия – это отливка различных изделий из расплавленных горных пород или из жидких металлургических шлаков.
Инженеры и конструкторы Московского камнелитейного завода – большие энтузиасты каменного литья. Изделия нашего завода – детали из плавленого базальта и диабаза – применяются во многих отраслях народного хозяйства. Так, например, облицованные камнем каналы гидрозолоудаления на ТЭЦ автозавода имени Лихачева работают уже более 20 лет, в то время как металлические выходят из строя через 2–3 года. На Шахтинской ГРЭС имени Артема в 1959 году сильно изнашиваемые участки пылепроводов мельничной установки (входные и выходные колена трубопроводов) были обмазаны базальтовой замазкой. Хотя толщина слоя не превышала 15–20 мм, срок службы этих участков увеличился в три-четыре раза. На Ясиновском коксохимическом заводе базальтовое литье было установлено на коксовых рампах. Это позволило сэкономить 500 тонн металла и резко улучшить сход кокса с рампы.

Из книги А. Чуйко «Искусственные камни», 1962 (С. 75–80).

Ссылка на основную публикацию
Телеграм бот по номеру авто — поиск сведений об владельце
Проверка авто по номеру двигателя в ГИБДД бесплатно Любой автомобиль определяется по номеру кузова и двигателя. На основании этой информации...
Таблетки Персен инструкция по применению, цена, отзывы врачей, состав и аналоги
Как применять персен форте инструкция по применению препарата, отзывы об успокоительных таблетках Пе Персен — это комбинированный медикамент растительного происхождения,...
Таблица вывода алкоголя из организма для водителя сколько времени нужно для отрезвления
Сколько держится алкоголь в крови и как выводится из организма В автомобильном мире существует проблема принятия алкогольных напитков. Автолюбители всех...
Телематический модуль StarLine M31 (Старлайн М31) с установкой в Доп-Центре, доступная цена, опытные
GSM модуль для Starline A91, доводчик стекол дооснащение дополнительными модулями Автосигнализация starline a91, разработанная и выпускаемая отечественным научно-производственным объединением СтарЛайн,...
Adblock detector