Схема Подключения Вольтметра

Принцип работы цифрового вольтметра

Вольтметры являются измерительными приборами, которые предназначены для измерения электродвижущей силы в электрической цепи на некотором ее участке, то есть, для измерения разности электрических потенциалов, которое называется напряжением. Единицей измерения этого параметра является Вольт. Такой измерительный прибор должен подключаться параллельно измеряемому участку или нагрузке. Если вольтметр подключить к выводам батарейки или блока питания, то прибор покажет не напряжение, а электродвижущую силу, так как при подключении в цепь с нагрузкой напряжение меняется.

Вольтметры в идеале должны иметь большое внутреннее сопротивление, для обеспечения точных показаний, и не воздействовать на измеряемую цепь. Поэтому в высокоточных приборах стремятся к наибольшему внутреннему сопротивлению.

Классификация
По принципу действия:
  • Электромеханические.
  • Электронные.
По назначению:
  • Для постоянного тока.
  • Для переменного тока.
  • Импульсные.
  • Фазочувствительные.
  • Селективные.
  • Универсальные.
По способу исполнения:
  • Переносные.
  • Стационарные.
  • Щитовые.
Устройство и работа

Рассмотрим основные виды вольтметров.

Электромеханические

Процесс измерения основан на прямой линейной зависимости движения механического вида от напряжения. Стрелка прибора находится на рамке с обмоткой, расположенной на вращающейся оси внутри постоянного магнита.

При возникновении в рамке напряжения, вокруг нее появляется электромагнитное поле. В результате рамка со стрелкой поворачивается в магнитном поле на определенный угол, величина которого зависит от измеряемой величины. Чувствительностью прибора называется коэффициент пропорциональности между значением угла поворота рамки и напряжением. Чтобы не было колебаний вращающейся рамки со стрелкой, используют магнитно-индукционный демпфер.

Он выполнен в виде алюминиевой пластины, закрепленной на оси, и движется совместно со стрелкой в магнитном поле. Вихревые токи при этом препятствуют колебаниям рамки, поэтому возникающие колебания стрелки затухают. Воздушные демпферы вольтметров состоят из цилиндров с поршнями, которые связаны механическим путем со стрелкой. При возникающих колебаниях стрелки поршень сглаживает их путем затормаживания в цилиндре. Чтобы точность измерений была высокой, прибор не должен зависеть от силы тяжести, стрелка должна отклоняться только от действия катушки в поле магнита, а не от силы тяжести. Поэтому подвижные элементы оснащают специальными грузиками, играющими роль противовесов.

Для уменьшения трения металлические наконечники изготавливают из прочной стали, затем полируют их. Подпятники выполняют из твердых камней. Зазор между подпятником и полированным наконечником регулируется винтом. Направление поворота стрелки зависит от полярности тока, протекающего через катушку. Поэтому для правильных измерений необходимо соблюдать полярность.

Электронные вольтметры

Приборы с электронной начинкой делятся в свою очередь на аналоговые и цифровые. Они отличаются тем, что в аналоговых приборах имеется стрелка и шкала, а в цифровых приборах значение напряжения выводится на цифровой экран. Аналоговые приборы работают по принципу преобразования переменного входного напряжения в постоянное. Затем оно усиливается и поступает на детектор, сигнал от которого отклоняет стрелку. Чем выше напряжение входа, тем больше отклонится стрелка.

Цифровые

Такие приборы работают с большей точностью, в отличие от аналоговых моделей. Принцип их работы заключается в изменении аналогового входного сигнала в цифровой вид. При этом кодированный цифровой сигнал приходит на устройство, преобразующее двоичный код в цифры, отображаемые на экране. Точность измерений цифровых вольтметров зависит от дискретности аналого-цифрового устройства, преобразующего сигнал.

Вольтметры в сети переменного тока

Работа таких устройств заключается в преобразовании переменного значения напряжения в постоянное. После этого сигнал усиливается и поступает на измерительный механизм магнитоэлектрического действия.

Импульсный вольтметр

Такой прибор способен измерить короткие импульсы напряжений в сети. Разберем устройство и работу импульсного вольтметра на примере устройства для поиска неисправностей в электрической сети автомобиля. Он служит для поиска импульсных помех.

Около 5% неисправностей автомобиля возникают из-за неисправностей электрической проводки в виде помех и исчезающего контакта. У старого автомобиля таких неисправностей больше. Простыми вольтметрами и тестерами такие неисправности невозможно, так как они не реагируют на одиночные импульсы, приводящие к сбою и выходу из строя оборудования.

Бортовой компьютер автомобиля при неисправностях выдает сигнал. При проверке выясняется, что это коды – ошибки. Ремонтники меняют свечи, сам компьютер, выполняют другие работы. Но по-прежнему выдается «ошибка двигателя», а кодов неисправностей нет, так как импульсы, вызванные неисправностями, не улавливаются.

Для решения этих проблем существует прибор, измеряющий импульсные сигналы напряжения. Он срабатывает при появлении одиночного импульса. На корпусе устройства имеется переключатель чувствительности.

Порядок работы
  • Большие «крокодилы» подключить на аккумуляторные клеммы.
  • Провод с небольшим «крокодилом» подключить на положительную клемму батареи.
  • Чувствительность установить на «0».
  • Двигатель запустить.
  • При нормальном аккумуляторе при запуске двигателя красный индикатор на приборе не должен светиться. В противном случае необходимо искать неисправность на клеммах батареи или в ее внутреннем состоянии.
  • При запущенном двигателе чувствительность установить на «1», покачать кузов машины, легко постучать по аккумулятору деревянной палкой. Если импульсный вольтметр не сработал, то в аккумуляторе нет проблем.
  • Подобным образом проверяют электропроводку, лампочки, электронные узлы и потребители энергии.

На этом примере становится понятно, для чего нужны и как работают импульсные вольтметры.

Фазочувствительные

Такие приборы называют векторметрами. Они предназначены для замеров квадратурных составляющих напряжений первой гармоники. Они оснащаются двумя индикаторами для показаний мнимой и действительной составляющей комплексного напряжения.

Фазочувствительный вольтметр определяет общее напряжение в комплексе. При этом начальная фаза опорного напряжения принимается за ноль. Такие типы приборов нашли применение в лабораторных исследованиях фазоамплитудных характеристик четырехполюсных усилителей и т.п.

Селективные

Вольтметры, способные избирательно выделить гармонические составляющие сложного сигнала и среднеквадратичную величину напряжения, называют селективными. По конструктивным особенностям и принципу работы такие приборы подобны устройству супергетеродинного радиоприемника, без регулятора усиления.

Универсальные

Название прибора говорит само за себя. С помощью такого вольтметра можно измерить ЭДС в любых цепях и при любых условиях. Чаще всего они имеют в комплекте набор различных шунтов в виде гасящих резисторов.

Универсальные измерители напряжения обладают множеством функций и возможностей, имеют незначительный расход энергии, и могут определить напряжение, как в аналоговом, так и в цифровом виде. Они применяются в различных сферах производства, науки, техники, лабораторных исследованиях.

Переносные вольтметры

Такие приборы являются автономными, так как не требуют для своей работы внешнего питания. Они имеют небольшие габаритные размеры и заключены в удобный эргономичный корпус. Одним из видов переносных вольтметров можно назвать мультиметр, или тестер. Он также имеет компактные размеры, однако его точность работы достаточно высокая, и позволяет получить точные результаты при выполнении ответственных заданий.

Стационарные вольтметры

Приборы стационарного типа обычно размещают в большом металлическом корпусе с большой шкалой измерений. Их можно устанавливать и подключать в различных положениях, для этого на корпусе имеются соответствующие крепления. Стоят такие приборы значительно дороже переносных моделей. Однако высокая точность работы позволяет применять их в различных сферах: лабораториях, крупных производственных объектах, научных центрах и т.д.

Щитовые

Внешний вид щитовых вольтметров аналогичен переносным приборам, с отличием в том, что устанавливаются они в специальные шкафы для контрольных приборов.

Читайте также:  Налёт на свечах зажигания диагностика и виды налета

Маркировка вольтметров
Для определения типа прибора можно посмотреть его обозначение маркировки. Если первая буква в названии:
  • «Д» — это вольтметр электродинамического действия.
  • «М» — прибор магнитоэлектрический.
  • «Т» — термоэлектрический.
  • «С» — электростатический.
  • «Ц» — приборы выпрямители.
  • «Э» — электромагнитные.
  • «Щ», «Ф» — электронные.

Радиоизмерительные вольтметры маркируются по-другому. Вначале стоит буква «В», а далее цифра обозначает тип. Затем идут символы модели прибора.

kapus.ru

Портал о строительстве и ремонте

Принцип работы электронных вольтметров переменного напряжения. Структурные схемы и принцип действия электронных вольтметров

Если для измерения постоянного напряжения Вы пользуетесь вольтметром с измерительной головкой магнитоэлектрической системы, то обращали внимание, что при неправильной полярности подключения щупов вольтметра к источнику измеряемого напряжения, стрелка измерительной головки отклоняется в обратную сторону за нуль и зашкаливает. Если таким прибором попытаться измерить переменное напряжение частотой около 50 Гц и выше, стрелка может слегка дёрнуться в первоначальный момент времени, но после будет указывать на ноль. Ненулевое значение будет говорить о наличии постоянной составляющей напряжения.

Самый простой способ выйти из положения – преобразовать переменное напряжение в постоянное, то есть выпрямить его. Это легко сделать с помощью одного единственного диода, как показано в статье . Если желаете измерить напряжение более-менее точно, для выпрямления можно использовать .

Схемы измерения

Причина такого поведения магнитоэлектрического измерительного прибора при измерении переменного напряжения проста. В таких приборах присутствует постоянный магнит, а направление отклонения стрелки прибора зависит от направления протекания тока в катушке поворачивающейся рамки. В момент положительного полупериода стрелка прибора пытается отклониться в одну сторону, отрицательного – в другую. При достаточно частой смене полярности, например как в потребительской сети 50 Гц, стрелка просто не успевает отклониться в одну сторону, как вдруг ей нужно отклоняться в обратную. При этом можно заметить просто дрожание стрелки, или не заметить ни чего.

Измерительные головки электромагнитной системы в устройстве своём не имеют постоянного магнита, а их принцип действия основан на явлении втягивания предмета из намагничивающегося материала в область центра катушки с током. Направление действия катушки с током на намагничивающийся объект не зависит от направления тока в обмотке катушки. Поэтому такие приборы легко измеряют как постоянный, так и переменный ток или напряжение.

Если у Вас возникла необходимость измерить напряжение в сети переменного тока, а под рукой только прибор с измерительной головкой магнитоэлектрической системы (с постоянным магнитом), то можно просто выйти из положения, имея под рукой хотя бы один выпрямительный диод с обратным напряжением не ниже амплитудного значения предположительно измеряемой величины. Для этого рассмотрим две схемы.

Схема с одним диодом

Менее точный, но предельно простой вариант. Всё, что нужно, это подключить один из щупов прибора через выпрямительный диод. При этом следует учесть, что к клемме приора с положительной полярностью диод должен быть подключен катодом (к отрицательной – анодом). При действии положительного полупериода стрелку будет отклонять измеряемая величина напряжения в нужную нам сторону. Во время отрицательного полупериода диод будет запираться, разрывая цепь прибора с источником напряжения, которое уже не подействует на стрелку прибора в обратном направлении.

Особенность измерения схемой с одним диодом

Определение значения величины. При измерении по рассмотренной схеме следует учесть, что прибор реагирует только во ремя одного полупериода, и покажет величину в два раза меньше действительного действующего значения напряжения. То есть, если при измерении напряжения такой схемой прибор показал значение 110 В, это показание нужно умножить на два, и получите то, что Вы измерили.

Выбор диода. Для правильного выбора диода нам нужно обязательно учесть обратное напряжение диода, которое должно быть больше амплитудного значения измеряемой величины, иначе диод может пробить, и прибор перестанет показывать, или может врать на несколько порядков. Например, мы собираемся измерить напряжение в розетке. При указании класса напряжения оборудования указывается действующая величина. Чтобы узнать амплитудное значение, нужно действующую величину умножить на корень из двух: . Напряжение потребительской сети 220 В. Амплитуда напряжения будет 220×1,41=311 В. В нашем случае вполне подойдут выпрямительные диоды с обратным напряжением 400 В и выше. Ниже не желательно, т.к. в случае перенапряжения в сети, амплитуда напряжения может превысить обратное напряжение диода, произойдёт необратимый пробой p-n перехода и диод выйдет из строя.

Кроме того, не выбирайте мощные диоды, чем меньше мощность, тем лучше. У мощных диодов большая площадь p-n перехода, который в запертом состоянии может вести себя как обкладки конденсатора. Таким образом, в отрицательный полупериод может сказаться ёмкостная проводимость, и показания прибора окажутся несколько занижены. Чем больше частота измеряемого напряжения, тем больше влияние, особенно при использовании высокоомных чувствительных измерительных головок.

Схема с диодным мостом

Более сложный вариант, но позволяющий измерять электрические величины более точно. Для этого потребуется 4 диода, либо готовый диодный мост. Принцип работы схемы аналогичен первому варианту, но здесь измерительный элемент чувствует оба полупериода напряжения, которые действуют на него однонаправлено, и прибор показывает действующее значение напряжения. То есть, показания прибора будут соответствовать действительности.

Выбор диодов или диодного моста аналогичен первому случаю.

Меры предосторожности

При модификации Вашего прибора указанными способами, уделите особое внимание безопасности. Диоды или диодный мост используемые в схемах, а так же контактные места рассечки проводов, щупов прибора, клеммы вольтметра должны быть надёжно заизолированы, чтобы предотвратить поражение электрическим током при случайном прикосновении к токоведущим частям прибора во время измерения.

Обобщенная структурная схема вольтметра постоянного тока приведена на рис. 1,а. Она включает входное устройство, усилитель постоянного тока А1 и электромеханический измерительный прибор PV1. Входное устройство предназначено для создания высокого входного сопротивления, чтобы уменьшить влияние вольтметра на измеряемую цепь. Оно состоит из делителей напряжения – аттенюаторов, с их помощью изменяют пределы измеряемых величин. В некоторых вольтметрах входное устройство содержит эмиттерный повторитель (или истоковый – при использовании полевых транзисторов).

К УПТ предъявляются высокие требования: малый дрейф нуля, высокая стабильность усиления, малый уровень шумов.

В вольтметрах постоянного тока высокой чувствительности входной сигнал преобразуется в переменный, усиливается и затем вновь преобразуется в напряжение постоянного тока.

Обобщенная структурная схема вольтметра переменного тока показана на рис. 1,б. Принцип действия такого вольтметра состоит в преобразовании переменного напряжения в постоянное, которое измеряется стрелочным электромеханическим прибором. В качестве преобразователей переменного напряжения в постоянное используются пиковые (амплитудные) детекторы, детекторы среднеквадратического и средневыпрямленного значения напряжения. Применение того или иного преобразователя переменного тока в постоянный определяет способность вольтметра измерять то или иное значение напряжения.

На обобщенной схеме показаны усилитель переменного напряжения А1 и УПТ А2, включенный после преобразователя V1. Однако в практических приборах применение обоих усилителей встречается очень редко. Используется либо додетекторное усиление, либо последетекторное. В высокочувствительные измерители напряжения вводят усилители переменного напряжения, обычно широкополосные, с полосой пропускания от единиц герц до десятков мегагерц.

Для обеспечения широкой области рабочих частот вплотьдо 1 ГГц усилители переменного напряжения не применяют, а применяют усилители постоянного тока.

ЦИФРОВЫЕ ВОЛЬТМЕТРЫ

В цифровых вольтметрах переменного напряжения используется аналоговое преобразование измеряемого переменного напряжения в постоянное. В импульсных цифровых вольтметрах находят применение специальные АЦП – амплитудно-временные преобразователи. В вольтметрах с уравновешивающим преобразованием используются соответствующие АЦП.

Цифровые вольтметры прямого преобразования более просты по устройству, но имеют меньшую точность. По используемому способу аналого-цифрового преобразования они бывают: с временным, временным с интегрированием и частотным преобразованием. Интегрирующие цифровые вольтметры, измеряющие среднее значение напряжения за время измерения, обладают повышенной помехозащищенностью. Входное устройство (рис. 2) содержит делители напряжения и предназначено для расширения пределов измерения. Оно обеспечивает достаточно высокое входное сопротивление вольтметра. Устройство определения полярности измеряемого напряжения основано на определении последовательности срабатывания двух устройств сравнения. На первое подается пилообразное напряжение, принимающее значения от –U до +U, и измеряемое напряжение. Устройство срабатывает (выдает импульс) в момент равенства напряжений. Другое устройство сравнения срабатывает в момент равенства пилообразного напряжения нулю. Сигнал полярности подается в цифровое отсчетное устройство. Устройство автоматического выбора пределов измерения сравнивает измеряемое напряжение с набором напряжений и управляет делителем.

Читайте также:  Хендай Солярис 2020 фото, видео, технические характеристики обновленной модели - Новый Solaris

Цифровые вольтметры с уравновешивающим преобразованием строятся в основном по двум типам структурных схем: с использованием программирующего устройства и цифрового счетчика. В них измеряемое напряжение уравновешивается дискретно-изменяющимся компенсирующим образцовым напряжением. На рис. 3,а,б показаны эти структурные схемы.

Рассмотрим работу вольтметра, построенного по схеме с цифровым счетчиком (рис. 3,б). Тактовые импульсы поступают на цифровой счетчик через управляющее устройство, определяющее порядок заполнения ячеек. Счетчик изменяет состояние элементов преобразователя кода и компенсирующее напряжение. Измеряемое напряжение, поступающее на устройство сравнения, сравнивается с компенсирующим напряжением. В зависимости от знака этой разности на выходе устройства сравнения управляющее устройство либо продолжает пропускать тактовые импульсы на счетчик, либо нет. Новый цикл измерений начинается с момента сбрасывания на нуль показаний счетчика. В этот же момент в исходное состояние приводится компенсирующее напряжение и на счетчик начинают поступать счетные импульсы.

2. ИССЛЕДОВАНИЕ ВОЛЬТМЕТРОВ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

1. Изучить принцип действия, устройство и основные метрологические характеристики электронных вольтметров с преобразователями амплитудного (пикового), среднеквадратического и средневыпрямленного значений напряжения.

2. Изучить особенности измерения напряжения сигналов различной формы.

3. Получить практические навыки работы с измерительными приборами.

Вольтметр переменного напряжения типа В7-15 (или ВУ-15) с амплитудным (пиковым) детектором.

Вольтметр переменного напряжения типа В7-27/А/1 (или В7-16) с преобразователем средневыпрямленного значения.

Вольтметр среднеквадратического значения (измеритель нелинейных искажений типа С6-11 в режиме измерения напряжения).

Вспомогательные приборы и принадлежности

Генератор измерительных сигналов (синусоидальной формы) низкочастотный Г3-109.

Генератор измерительных сигналов (синусоидальной формы) высокочастотный Г4-158.

Генератор прямоугольных импульсов с изменяемым коэффициентом заполнения (вспомогательный генератор).

Электронно-лучевой осциллограф С1-67.

Эталонный резистор с номиналом (1,00 ± 0,05) МОм.

1. Исследовать влияние формы сигнала на показания электронных вольтметров с различными типами преобразователей.

2. Оценить входное сопротивление вольтметра В7-27/А/1 (или В7-16)

и его влияние на погрешность измерения напряжения.

3. Исследовать влияние параметров входной цепи вольтметра и соединительных проводов на частотный диапазон измерения напряжения с использованием одного из исследуемых вольтметров

– самого широкополосного В7-15 (или ВУ-15).

Указание. Количественные характеристики (параметры) переменного периодического напряженияu (t ) описываются следующими функционалами:

1. Среднее значение (постоянная составляющая) напряжения

где T — интервал интегрирования. Численное значениеТ в вольтметрах имеет порядок (0,2,…,1) с. При расчетах среднего значения и других характеристик периодического сигнала в качестве интервалаТ удобно взять период сигнала.

2. Максимальное и минимальное значения напряжения

, Uмин = min

Размах U p =U макс -U мин .

Пиковое отклонение “вверх” напряжения

U вв= U макс — U ср.

Пиковое отклонение “вниз” напряжения

3. Среднеквадратическое (действующее) значение напряжения

4. Средневыпрямленное значение напряжения

В электронных вольтметрах переменного напряжения используют три типа преобразователей:

Преобразователь амплитудного (пикового) значения, выходное напряжение которого пропорционально максимальному значению напряжения измеряемого сигналаU m (пиковому отклонению напряжения “вверх”, если

анод диода подключен к входу преобразователя или пиковому отклонению напряжения “вниз” — при обратном подключении диода);

Преобразователь среднеквадратического значения (на основе термоэлектрических, диодных, транзисторных или оптронных преобразователей), выходное напряжение которого пропорционально среднеквадратическому (действующему) значению измеренного напряжения

Преобразователь средневыпрямленного значения, выходное напряжение которого пропорционально среднему значению выпрямленного напряжения U св (среднему значению модуля напряжения).

Если у вольтметра закрытый вход, т.е. постоянная составляющая U ср

измеряемого напряжения не проходит на преобразователь, то его показания определяются только переменной составляющей сигнала.

Шкалы электронных вольтметров переменного тока (кроме импульсных) градуируют в среднеквадратических значениях напряжения сигнала синусоидальной формы. Импульсные вольтметры градуируют в амплитудных значениях синусоидального сигнала.

С учетом указанных особенностей показания вольтметров U шк определяются формулами, приведенными в табл. 2.1.

Среднеквадратическое U ск , (пиковое отклонение “вверх”)U m и средневыпрямленное значенияU св связаны между собой так называемыми коэффициентами амплитудыК А и формыК Ф следующим образом:

Um = KA · Uск ; Uск = KФ · Uсв ; Um = KA · KФ · Uсв .

Зная результат измерений, то есть значение функционала (табл. 2.1) для используемого типа преобразователя вольтметра, можно найти неизвестные параметры измеряемого напряжения. Но для этого надо правильно — в соответствии с видом функции u(t) , описывающей измеряемый сигнал, выбрать значения коэффициентовK A иK Ф . Численные значения этих

коэффициентов можно вывести с использованием формул (2.2), (2.5) и (2.6).

с преобразователем среднеквадратического значения

с преобразователем средневыпрямленного значения

Порядок выполнения работы и методические указания

1. Ознакомление с характеристиками исследуемых вольтметров

и принципами их работы (домашняя подготовка к работе)

1.1. Изучить по литературе и конспекту лекций теоретический материал,

относящийся к данной работе. Изучить описание данной работы и заготовить в рабочей тетради формы табл. 2.1-2.6 с их заголовками.

1.2. Ознакомиться по с метрологическими характеристиками исследуемых вольтметров. Заполнить табл. 2.2.

1.3. Сопоставить эти характеристики. Сделать выводы об области применения исследуемых вольтметров с точки зрения:

формы измеряемого сигнала,

диапазона измеряемых значений напряжений,

диапазона рабочих частот,

входного сопротивления и входной емкости.

Основные метрологические характеристики вольтметров

Как устроен вольтметр, принцип действия и назначение прибора

Время на чтение:

Существует большое количество разных измерительных приборов. Одним из часто используемых устройств как в быту, так и в профессиональной сфере деятельности, является вольтметр. Предназначен он для измерения значения напряжения в любой точке электрической сети. Промышленность изготавливает несколько типов таких измерителей, отличающихся друг от друга принципом работы. При этом каждый из них имеет как достоинства, так и недостатки.

История изобретения

Итальянский учёный Алессандро Вольт, проведя ряд экспериментов с электричеством, приходит к выводу, что получить электрический ток можно используя соединение металлов с жидкостью. Поместив медные пластины, покрытые цинком, в кислоту, он в 1800 году создаёт первый электрохимический источник энергии, названный позже «вольтов столб».

Он также устанавливает, что при соединении двух разных металлов возникает сила, которая затрачивается на работу по перемещению электрического заряда из одной точки в другую. При этом перемещённый заряд изменяет свой потенциал (величину энергии), которым он обладает. Разность между начальным потенциалом и конечным получает название «напряжение».

Для измерения количества электричества Вольт использует металлический стержень, вставленный в каучуковую пробку и помещённый в бутылку. На нижний конец, находящийся в бутылке, он надевает соломинки, а на другой — шар. Учёный наблюдает, что при контакте шара с наэлектризованным веществом соломинки отталкиваются. Это позволяет ему судить о степени заряженности материала.

Существование напряжения Вольт доказал проведя следующий опыт. На электроскоп (прибор регистрирующий заряд) был надет медный и цинковый диск. Между ними проложен тонкий слой диэлектрика. На короткое время физик замыкал металлы между собой проволокой. Лепестки на электроскопе немного раздвигались. Далее диски раздвигались на большее расстояние, при этом лепестки регистратора расходились ещё больше.

Фактически это был первый эксперимент, позволяющий измерить, хотя и в грубой форме, напряжение. В 1830 году английский учёный Майкл Фарадей открывает явление электромагнитной индукции, на котором впоследствии создаётся ряд электроизмерительных приборов.

В 1881 году французский физик Арсен Д’Арсонваль создаёт устройство, состоящее из катушки и стрелки, помещённых в постоянное магнитное поле. На катушку подавался электрический ток, в результате чего стрелка отклонялась от начального положения. В этом же году был проведён Международный электротехнический конгресс, на котором были приняты обозначения электрических величин. Прибор, предназначенный для измерения разности потенциалов, был назван вольтметром, а напряжение стало измеряться в вольтах.

Читайте также:  Обрыв ремня ГРМ – 6 причин, почему он рвется и на каких двигателях

Суть прибора

Вольтметр — это устройство, относящееся к классу электроизмерительных приборов, предназначенное для измерения электродвижущей силы (ЭДС) на участке электрической линии. Другими словами, вольтметр показывает разность потенциалов (напряжение) между двумя точками электрической цепи. Подключается он всегда параллельно к источнику тока или нагрузке.

При измерении устройство не должно никоим образом воздействовать на параметры электрической цепи, поэтому идеальным считается прибор, имеющий бесконечно большое внутреннее сопротивление. От этого параметра в первую очередь и зависит точность замеров. В зависимости от формы измеряемого сигнала, вольтметры разделяются на устройства, измеряющие постоянный или переменный ток.

Кроме того, по принципу измерения вольтметры бывают:

  • Диодно-компенсационные. Принцип их действия основан на сравнении измеряемого сигнала с эталонным, выдаваемым регулируемым источником. Основным элементом конструкции является вакуумный диод. Они используются только для измерения гармоничного (переменного) сигнала, но в широком диапазоне частот. Точность замеров довольно высокая.
  • Импульсные. Измеряют значение амплитуды сигнала периодических и одиночных импульсов с большой скважностью. Структурная схема устройства состоит из преобразователя уровня импульса, усилителя и отсчётного устройства.
  • Фазочувствительные. Характерным признаком такого устройства является наличие двух индикаторов, служащих для регистрации действительной и мнимой составляющих комплексного сигнала. Их используют для исследований амплитудно-фазовых характеристик.
  • Селективные. По своей схемотехнике похожи на супергетеродинные радиоприёмники. Способны выделять гармоники сигнала и измерять их среднеквадратичную величину амплитуды.
  • Универсальные. Многофункциональные приборы, умеющие измерять любой тип сигнала.

Все приведенные приборы применяются в лабораториях и на производствах для наладки работы той или иной техники. В быту же и радиолюбительстве чаще используются вольтметры, умеющие измерять среднеквадратичное напряжение переменного и постоянного тока. Поэтому все типы устройств, принято разделять на два вида: аналоговые и цифровые.

Обозначение и характеристики

Согласно единой системе конструкторской документации, на принципиальных и электрических схемах вольтметр принято обозначать в виде окружности, в середину которой вписывается латинская буква V. На рисунках и чертежах прибор подписывается русской буквой «В» или английской аббревиатурой PV.

Кроме того, первая цифра, стоящая в названии прибора после буквы «В», выпускаемого в странах бывшего СССР, обозначает тип устройства. Например, «B2» — постоянного тока, «B3» — переменного, «B4» — импульсного, «B7» — универсального.

Для оценки возможностей прибора принято использовать следующие технические характеристики:

  • Внутренний импеданс источника. Характеризуется сопротивлением, измеренным на выходе прибора. Чем больше это значение, тем прибор считается более качественным.
  • Диапазон измерений. Это область, ограниченная наименьшим и наибольшим значением, которое может измерить прибор. Большинство тестеров являются универсальными, измеряющими напряжение в диапазоне от десятков милливольт до киловольта. Однако в исследовательских центрах используются приборы, позволяющие определять мили или даже микровольты.
  • Точность показаний. Этим параметром обозначается погрешность между реальными значениями напряжения и измеренными. В зависимости от значений измеряемой амплитуды сигнала, эта погрешность изменяется, поэтому характеризуется она классом точности. Например, для прибора, работающего в диапазоне измерения от 0 до 60 вольт, класс точности, равный единице, будет обозначать, что погрешность прибора не может превышать 0,6 В, но на малых значениях такой допуск недопустим. Поэтому диапазон измерений и разбивается на небольшие участки.
  • Диапазон частот. Определяется чувствительностью электронных компонентов регистрировать сигнал той или иной частоты.
  • Рабочая температура окружающей среды. Обозначает условия, при которых погрешность измерения будет соответствовать заявленному классу точности.

Виды вольтметров

Кроме технических параметров, определяющих назначение прибора, в описаниях вольтметра часто указываются его физические размеры. Связано это с тем, что все устройства по виду конструкции разделяют на три типа:

  1. Переносные.
  2. Стационарные.
  3. Панельные (щитовые).

Первые обычно относятся к полупрофессиональным и любительским измерительным устройствам. Выглядят они в виде прямоугольных коробочек, сделанных из жёсткого пластика или карболита. Все они работают от мобильных источников питания, аккумуляторов или батареек. Для удобства определения амплитудного значения сигнала в наборе с вольтметрами идёт съёмная пара щупов.

Вторые запитываются от сети переменного напряжения, через встроенный в них блок питания. Чаще всего это узкоспециализированные тестеры, обладающие высокой точностью измерений. Используют их в профессиональной сфере деятельности для контроля напряжения в важных точках электрической цепи.

Третий же тип предназначен для использования в специально оборудованных шкафах для постоянного контроля величины напряжения. Обычно применяются в комплексе с защитными приборами. Такого вида вольтметром измеряют переменное однофазное или трёхфазное напряжение.

Аналоговое устройство

Отличительной чертой аналогового устройства является присутствие стрелочного индикатора. В основе принципа работы вольтметра такого типа лежит использование измерительной головки. Конструктивно она выполняется в виде алюминиевого контура, помещённого в магнитное поле. Стрелка прибора и оси приклеивается к рамке, на которую намотана проволока.

Через пружины или растяжки, удерживающие стрелку в начальном положении, на конструкцию подаётся ток. В зависимости от величины его силы, магнитное поле воздействует на рамку с разной интенсивностью. В итоге возникает крутящий момент, выводящий стрелку из нулевого состояния.

Для устойчивого положения стрелки используются демпферы. Под указателем располагается шкала, отградуированная по эталонным приборам. Поэтому каждое положение стрелки соответствует своему значению напряжения. Как только измерения заканчиваются, ток перестаёт поступать на измерительную головку и указатель под действием растяжек возвращается на своё первоначальное положение.

Структурную схему аналогового прибора можно подставить в виде последовательной цепочки, состоящей из входного устройства, усилителя тока, детектора, измерительной головки.

Технические возможности вольтметра во многом определяются чувствительностью головки. К достоинствам аналогового прибора относят инерционность и невосприимчивость к помехам. Он идеально подходит для отображения динамики сигнала. Такой измеритель мгновенно показывает изменение вольтажа. Например, при вычислении напряжения с пульсациями, тестер, интегрируя их, показывает среднее значение. Расширить диапазон измерения можно применив добавочные сопротивления или шунты. Но при своих достоинствах стрелочные вольтметры характеризуются большой погрешностью и сложность в интерпретации результатов измерения.

Цифровой прибор

Принцип действия цифрового вольтметра переменного тока, как и постоянного, основан на использовании аналогово-цифрового преобразователя (АЦП). Измеряемый сигнал поступает на вход микросхемы, преобразовывающей его в набор импульсов, передающихся дальше в блок обработки для формирования кода. Трансформированный сигнал направляется на цифровое отсчётное устройство, а с него уже и на дисплей.

Точность замеров электронного вольтметра зависит от качества преобразования сигнала в цифровой код. Попадая на компаратор, сигнал разбивается на группы единиц и направляется в ячейки памяти, сохраняющих информацию. Если код подать напрямую, то на экране показания будут неустойчивыми. Дисплеем управляет свой контроллер, обеспечивающий вывод данных из памяти и засвечивающий сегменты дисплея.

К достоинствам цифрового вольтметра относят высокое внутреннее сопротивление, что делает его измерения очень точными. А также он оснащён электронным усилителем, позволяющим проводить замеры даже слабых сигналов. Результат измерений отображается на табло сразу в виде числа, поэтому нет необходимости высчитывать значение по шкалам.

Электронный измеритель нечувствителен к магнитным полям и одинаково измеряет при любой полярности приложенного напряжения.

Порядок измерения

Чтобы провести измерения, вольтметр подключается с помощью измерительных щупов параллельно двум точкам, между которыми нужно измерить разность потенциалов. Принцип определения амплитуды будет одинаков для любого типа устройства. Порядок измерения напряжения можно представить в виде следующих действий:

  1. Включить устройство.
  2. Подключить штекера измерительных проводов в соответствующие гнёзда на панели прибора.
  3. Установить нужный диапазон измерения.
  4. Прижать измерительные щупы к исследуемому объекту.
  5. Прочитать показания с экрана прибора.

Таким образом, при помощи вольтметра можно достаточно быстро измерить величину амплитуды между двумя точками электрической линии с любым типом сигнала. Прибор имеет высокое собственное сопротивление, поэтому пользоваться им довольно безопасно.

Ссылка на основную публикацию
Схема и устройство системы питания двигателя Д-240; Интернет-магазин сельхозтехники и сельхоззапчаст
Система питания двигателя Д-240 Рис. Общее устройство системы питания дизеля Д-240 и его модификаций: 1 — глушитель; 2 — воздухоочиститель;...
Стучит двигатель на холодную стук клапанов, стук гидрокомпенсаторов
Стук в двигателе почему он застучал (распредвал, коленвал, клапаны ) Стук в двигателе рано или поздно приводит к поломке мотора,...
Стучит суппорт — что делать как устранить громыхание своими руками
Стук и дребезг суппортов, как устранить; Здравствуй товарищ! Блог — Здравствуй товарищ! Многие сталкиваются с достаточно распространённой проблемой проблема дребезга...
Схема и устройство спидометра; Схема-авто; поделки для авто своими руками
Схема и устройство спидометра; Схема-авто; поделки для авто своими руками Без спидометра нам не обойтись. Скорости велики, а их влияние...
Adblock detector