Что измеряют в амперах амперы — единицы измерения силы 1

Закон ампера простыми словами определение, формула, применение

На основе магнитных явлениях построено действие электротехнических устройств. Все современные электромоторы, генераторы и множество других электромеханических приборов работают по принципу взаимодействия электрического тока с окружающими его магнитными полями. Эти взаимодействия описывает знаменитый закон Ампера, названный так в честь своего первооткрывателя.

Влияние электричества на поведение магнитной стрелки впервые обнаружил Х. К. Эрстед. Он заметил, что вопреки ожиданию, магнитное поле не параллельно вектору тока, а перпендикулярно ему. Развивая выводы Эрстеда, и продолжая исследования в этом направлении, Мари Ампер установил [1], что электричество взаимодействует не только с магнитами, но и между собой. Заслуга Ампера в том, что он теоретически обосновал взаимное влияние токов и предоставил формулу, позволяющую вычислять силы этого взаимодействия.

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции. Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции. То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α — угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.

Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 90 0 , то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Применение

Закон Ампера, а точнее следствия, вытекающие из него, используются в каждом электромеханическом устройстве, где необходимо вызвать движение рабочих элементов. Самым распространённым механизмом, работа которого базируется на законе Ампера, является электродвигатель.

Применение электромоторов настолько широкое, что его можно увидеть практически во всех сферах человеческой деятельности:

  • на производстве, в качестве приводов станков и различного оборудования;
  • в бытовой сфере (бытовая электротехника);
  • в электроинструментах;
  • на транспорте;
  • в устройствах автоматики, в офисной технике и во многих других сферах.

Из закона Ампера вытекает возможность получения электротока путём перемещения проводников, находящихся в магнитном поле. На данном принципе построены все генераторы электрического тока. Благодаря этой уникальной возможности, у нас появился доступ к использованию электроэнергии для различных потребностей.

Мы буквально окружены проявлением закона Ампера. Например, просмотр телепередачи сопровождается звуком, который транслируется через динамики. Но диффузор динамика приводит в движение сила Ампера. Мы разговариваем по телефону – там тоже есть динамик и микрофон. Принцип действия современных микрофонов также основан на законе Ампера.

Вход в помещение через автоматическую раздвижную дверь, поднятие на лифте, поездка в троллейбусе, трамвае, запуск двигателя автомобиля – всё это было бы невозможным, если бы не существовало взаимодействия электрического тока с силами магнитной индукции.

Ампер открыл перед человечеством такие возможности, без которых развитие научно-технического прогресса было бы невозможным. Влияние этого закона в электротехнике сравнимо с законами Ньютона, которые в своё время совершили революцию в механике. В этом огромная заслуга учёного-физика Мари Ампера, труды которого увенчались открытием в 1820 г. знаменитого закона.

Ампер как единица измерения и его взаимосвязь с мощностью

Электротехника тесно связала ампер и ватт между собой при помощи формул. Но так как они обозначают различные величины, не так уж и просто произвести перевод из одной в другую. Однако, согласно разработанным методикам, одни единицы измерения выражают другие и наоборот.Попробуем разобраться с этой задачей, но прежде всего определимся, что измеряется в амперах, ваттах, а заодно и вольтах, а также узнаем, какая между ними существует взаимосвязь.

Читайте также:  История фирмы Chrysler Крайслер - Автомобильный журнал

Ампер и его характеристика

Согласно специальным справочникам «1 ампер — это сила тока такой величины, что будучи пропущенной в двух математических проводниках бесконечной длины и бесконечно малого сечения, расположенных на расстоянии 1 м друг от друга в вакууме, вызывает между ними силу взаимодействия, равную 2×10 в -7 степени Ньютона». Вот такая абракадабра, которая мало что говорит даже профессионалу, за исключением разве профессора прикладной физики.

Теперь посмотрим по-другому. Мы воткнули вилку утюга в розетку. По проводу потек ток, который нагрел утюг. В соседнюю розетку мы воткнем настольную лампу. По ее шнуру тоже потек ток, который заставил лампочку светиться. И в том, и в другом случае работу делает ток, но только разной величины. Поскольку утюг мощнее лампы накаливания, для его нормальной работы требуется ток большей величины. Вот как раз эта величина и измеряется в амперах. Если утюг в 2 раза мощнее лампы, то и ток через него будет в два раза больше.

Итак, если сравнить электрический провод с водопроводной трубой, а электрический ток с водой, то сила тока — не что иное, как скорость протекания воды. Обратите внимание — скорость, а не объем.

Силу тока принято измерять в амперах (А) в честь французского физика Андре-Мари Ампера, который ввел в науку понятие «сила тока». Как и любая другая единица измерения, ампер может иметь те или иные приставки, используемые для обозначения десятичных кратных единиц. К примеру, миллиампер (мА), микроампер (мкА), килоампер (кА) и т. д. Порядок работы с такими приставками тот же, что и у других величин, скажем, грамма, литра, метра. Таким образом:

  • 1 А = 1 000 мА;
  • 10 мА = 0.01 А;
  • 0.4 кА = 400 А;
  • 25 мкА = 0.025 мА и т. д.

После небольшой практики перевести одну величину в другую можно безо всяких калькуляторов, а просто в уме.

Ватт — единица электрической мощности

Теперь самое время перейти к ваттам и выяснить, что измеряет эта величина. «У тебя мощный пылесос?». «Да, почти два киловатта!». Такой диалог каждый из нас если и не вел сам, то наверняка был его свидетелем. А фразы «киловаттный чайник», «стоваттная лампочка» знакомы? Безусловно. Поэтому вы, конечно, уже догадались, что измеряется в ваттах. Совершенно верно — мощность. Точнее, электрическая мощность. Чем мощнее прибор, тем он производительней. Чайник быстрее закипает, лампочка ярче светит, мотор быстрее и сильнее своего маломощного собрата.

Для чего нужна эта единица измерения, думается, понятно всем — для оценки мощности того или иного электрического оборудования. Чем оно мощнее, тем больше электроэнергии потребляет.

Перевод из одной величины в другую

Поставим вопрос иначе: можно ли вообще перевести силу тока в электрическую мощность, как, скажем, сантиметры в дюймы или килограммы в фунты? Увы. Килограмм и фунт — величины веса. Сантиметр и дюйм — единицы измерения длины. Но амперы и ватты — единицы измерения совершенно разных величин. Вам же не придет в голову переводить литры в метры! Да, мощность напрямую зависит от тока потребления, но и только.

С таким же успехом можно сказать, что метры дорожного полотна напрямую зависят от литров бензина в баке. Чтобы вычислить пробег авто, нужно знать «прожорливость» двигателя. Для того чтобы узнать, какова мощность того же чайника, через который течет ток, скажем, в 2 ампера, нужно знать напряжение, подаваемое на этот самый чайник.

Вернемся к аналогии с водопроводной трубой, которая использовалась в пояснении силы тока. Сколько кубометров воды вытечет из трубы, скажем, за час, если скорость потока в этой самой трубе метр в секунду? Для решения этой задачи вам не хватает данных — сечения трубы. То же самое и с ваттом. Скорость потока (электрического тока) есть, сечения трубы (напряжения) нет. Значит, производительность трубы (или мощность чайника) рассчитать нельзя. Что ж, придется заняться напряжением.

Вольт — единица измерения напряжения

«Сколько выдает эта батарейка?». — «1.5 вольта». «В этой розетке напряжение 220 вольт?». — «Нет, 110». Напряжение, согласно специальной литературе, это «разность потенциалов между двумя проводниками». На контактах батареек или аккумуляторов оно одно, в розетках — другое, на высоковольтных подстанциях — третье, но все это вольты. Значит, что измеряется в вольтах? Правильно, напряжение. Как и амперы (да и ватты), вольт может иметь десятичную приставку:

  • 1 В = 1000 мВ;
  • 1000 В = 1 кВ;
  • 0.01 В = 10 мВ и т. д.

Вот теперь можно попытаться рассчитать мощность, учитывая ток. Именно рассчитать, а не перевести! Предположим, в вашем распоряжении есть лампа, потребляющая ток 5 А от сети 220 В. Какова ее электрическая мощность? Для ответа на этот вопрос достаточно воспользоваться общеизвестной формулой:

P = I х U,

где P — мощность прибора в ваттах, I — ток, протекающий через прибор в амперах, U — напряжение, подаваемое на прибор в вольтах.

5 А х 220 В = 1100 Вт или 1.1 кВт.

Итак, вы «перевели» амперы в ватты, хотя, как вы понимаете, ни о каком «переводе» речи не шло — обычный расчет, чувствуете разницу? Чтобы «перевести» ватты в амперы, воспользуемся следующей формулой:

I = P/U.

Электроплитка имеет мощность в 1.3 кВт (написано на шильдике). Какой ток она будет потреблять от сети 220 В?

1300 Вт / 220 В = 5.9 А или грубо 6 А.

Расчет мощности реактивной нагрузки

Все вышеприведенные формулы справедливы лишь для расчетов в цепях постоянного тока или переменного тока, но при активной нагрузке — лампе накаливания, утюга, электрочайника, обогревателя и т. п. Если же ток переменный, а в качестве нагрузки используется, скажем, электродвигатель (та же электромясорубка, циркулярная пила, электродрель и пр.), то формула расчета мощности имеет несколько иной вид:

Читайте также:  Когда перестали выпускать ваз 2115 - годы выпуска, до какого года выпускали

P = I х U х cos ф, где ф — сдвиг фаз между питающим напряжением и потребляемым током в градусах. Для каждого устройства он разный и тем больше, чем большую индуктивность или емкость имеет нагрузка. Эта величина обычно приводится в сопроводительной документации к прибору или прямо на шильдике устройства (того же электродвигателя).

Ну вот вы и выяснили, в чем взаимосвязь между амперами и ваттами. Достаточно взять в руки калькулятор и рассчитать по уже известным формулам необходимые величины.

Как перевести киловатты в амперы и наоборот

Наличие развитой электрической сети является таким же признаком современного объекта недвижимости как водопровод, канализация и система вентиляции.

Аналогично любой сложной технической системе, электрическая проводка как комплекс характеризуется определенными численными параметрами, среди которых чаще всего упоминаются амперы и киловатты.

Связано это с тем, что внутридомовая электрическая сеть имеет фиксированное напряжение (220 и 380 В), которое полностью определяется схемой, использованной при ее построении, тогда как амперы и киловатты меняются в широких пределах.

Даже при начальных знаниях в области электротехники, а также при первичном знакомстве с принципами построения и функционирования электрической проводки становится ясным, что указанные параметры взаимозависимы.

Поэтому сразу же возникает естественное стремление свести их к одной интегральной величине или, при нецелесообразности такого перехода, установить между ними простую взаимосвязь.

В чем состоит отличие ампер и киловатт

Фундаментальное отличие между единицами измерения параметров электрической сети, которые вынесены в заголовок этого раздела, состоит в том, что они представляют собой численную меру различных физических величин.

В данном случае:

  • амперы (сокращение А) показывают силу тока;
  • ватты и киловатты (сокращение Вт и кВт, соответственно) характеризуют активную (фактически полезную) мощность.

На практике используется также расширенное описание мощности с измерением ее в вольт-амперах и, соответственно киловольт-амперы, которые кратко обозначаются как ВА и кВА.

Они, в отличие от Вт и кВт, которыми описывается активная мощность, указывают на полную мощность.

В цепях постоянного тока полная и активная мощности совпадают. Аналогично, в сети переменного тока при небольшой мощности нагрузки на инженерном уровне строгости можно не учитывать различие между Вт (кВт) и ВА (кВА), т.е. работать только с двумя первыми единицами.

Для таких цепей действует следующее простое соотношение:

где W – (активная) мощность, задаваемая в Вт, U –напряжение, указываемое в вольтах, I – сила тока, измеряемая в амперах.

При увеличении мощности нагрузки до уровня тысяча ватт и выше для постоянного тока соотношение (1) не меняется, а для переменного тока его целесообразно записать как:

где cosφ – так называемый коэффициент мощности ли просто “косинус фи”, показывающий эффективность преобразования электрического тока в активную мощность.

По физическому смыслу φ представляет собой угол между векторами переменного тока и напряжения или угол фазового сдвига между напряжением и током.

Хорошим критерием необходимость учета данной особенности являются те случаи, когда в паспортных данных и/или на корпусных табличках-шильдиках электроприборов, преимущественно мощных, потреблением более 1 кВт, вместо кВт указывают ВА или кВА.

Обычно для бытовых электрических устройств с мощными электродвигателями (стиральные и посудомоечные машины, насосы и аналогичные им) можно положить cosφ = 0,85.

Это означает, что 85% потребляемой энергии является полезной, а 15% образует так называемую реактивную мощность, которая непрерывно переходит из сети в нагрузку и обратно до тех пор, пока в процессе этих переходов она не рассеется в виде тепла.

При этом сама сеть должна быть рассчитана именно на полную мощность, а не на полезную. Для указания этого факта ее указывают не в ваттах, а в вольт-амперах.

Как единица измерения ватт (воль-ампер) иногда оказывается слишком маленьким, что приводит к сложным для визуального восприятия числам с большим количеством знаков. С учетом этой особенности в ряде случаев мощность указывают в киловаттах и киловольт-амперах.

Для этих единиц справедливо:

1000 Вт = 1 кВт и 1000 ВА = 1кВА. (3).

Почему возникает необходимость перехода от ампер к киловаттам и обратно

Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.

  • сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
  • аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
  • основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.

Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.

Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.

С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.

Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.

Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.

Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.

В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.

Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.

Определение мощности по силе тока для однофазной сети

Необходимость выполнения этой процедуры чаще всего возникает при задании ограничений по максимальной мощности электроприбора, который можно подключить к конкретной розетке или их группе.

При нарушении данного ограничения возрастают риски пожара, а пластмассовые декоративные элементы розетки могут расплавиться из-за избытка выделяющегося тепла.

Читайте также:  Чем смазать направляющие тормозного суппорта; АВТОМАСТЕРСКАЯ

На основании определений, которые в математической форме описываются выражениями (1) и (2), для нахождения мощности следует просто умножить ток на напряжение.

Максимально допустимый ток выносится на маркировку розетки и для большинства комнатных бытовых изделий этой разновидности обычно составляет 6 А.

Напряжение, подаваемое от электросети на розетку, равно 220 – 230 В. Таким образом, максимальная мощность составляет 1,3 кВт.

Отдельно укажем на то, что риски повреждения розетки при подключении чрезмерно мощного устройства минимальны в правильно спроектированной бытовой проводке.

Это полезное свойство обеспечено:

  • установкой автоматов;
  • применением в мощных электроприборах вилок, которые физически не могут подключаться к обычным розеткам (механическая блокировка).

Своеобразным вариантом механической блокировки можно считать довольно популярное прямое соединение мощного стационарного устройства (кондиционер, бойлер) с сетью без использования розеток.

Пересчет мощности в ток для однофазной сети

Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.

На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.

Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.

Например, при мощности 3000 Вт в соответствии с приведенным правилом получаем ток в 3000/220 = 13,7 А, что указывает на необходимость применения 16-амперного защитного автомата.

При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).

Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:

  • W = 2,8*1000 = 2800 Вт;
  • I = W/220 = 12,7 А.

Если мощность указывается в ВА или кВА, то выкладка не меняется, т.е. 3000/220 = 13,7 А (во втором случае предварительно переводим кВА в простые ВА, т.е. 3 кВА = 3*1000 = 3000 ВА).

Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т.е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.

Быстрая оценка токов и мощностей

Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.

В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.

Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.

Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.

Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.

Таким образом, получаем простые правила:

  • один кВт соответствует 4,5 А тока;
  • один ампер соответствует мощности 0,22 кВт.

Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.

Связь мощности и тока в трехфазной сети

Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.

В качестве базового соотношения традиционно берется выражение:

причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.

Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.

Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.

Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:

  • один кВт соответствует 1,5 А потребляемого тока;
  • один ампер соответствует мощности 0,66 кВт.

Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.

Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.

Особенности выполнения расчетов автоматов

Одной из наиболее часто встречающихся задач при проектировании электрической проводки в жилых помещениях является определение тока срабатывания автоматических выключателей.

Эти элементы обязательны для применения и защищают отдельные сети и подключенные к ним электрические приборы от выхода из строя и возгорания в случае превышения нагрузки, а саму линию от короткого замыкания.

Расчет представляет собой 4-шаговую процедуру, которая выполняется следующим образом:

  • формируют перечень всех устройств, которые будут получать электроснабжение от данной сети;
  • в технических данных этих устройств находят мощность;
  • с учетом того, что отдельные устройства подключаются параллельно, вычисляют общий ток в амперах по формуле I = W [Вт]/220;
  • по величине общего тока определяют номинал автомата.

Проиллюстрируем приведенную методику примером.

Пусть конкретно взятый провод обслуживает следующие потенциально одновременно включенные потребители:

  • настольную лампу мощностью 60 Вт;
  • торшер с двумя лампами по 60 Вт;
  • напольный кондиционер мощностью 1,7 кВт;
  • персональный компьютер с мощностью потребления 600 Вт.

Находим общую мощность потребления имеющейся техники. Предварительно переводим потребляемую мощность в общие единицы (в данном случае это ватты). Имеем 60 + 2*60 + 1,7*1000 + 600 = 2480 Вт.

Кондиционер является потребителем, мощность которого превышает 1 кВт. Для увеличения общей эксплуатационной надежности создаваемой проводки выполним оценку величины тока сверху, т.е. положим коэффициент мощности равным cosφ = 1.

Фактическое значение тока будет несколько меньше, разницу считаем запасом расчета.

Обычным мультиметром замеряем напряжение в сети, которое равно 230 В.

Тогда ожидаемый ток при одновременном функционировании всех приборов на основании формулы (1) составит:

I = 2280/230 = 10,8 А.

Если воспользоваться методом экспресс-оценки, то мощность вычисляем уже как 0,06 + 2*0,06 + 1,7*1 + 0,6 = 2,48 кВт и в соответствии с правилом 4,5 А/кВт получаем довольно близкое значение 11,2 А.

Как вывод можем констатировать, что данный участок электрической сети целесообразно защищать 16-амперным автоматом.

Понравилась статья? Оставляйте свои отзывы в комментариях.

Ссылка на основную публикацию
Что за датчик на потолке ваз 2110; Защита имущества
Устранение неисправностей климат контроля ВАЗ-2110 Климат-контроль – эволюционная ветвь развития систем отопления/охлаждения салона автомобиля – в настоящее время прочно вошла...
Что делать, если машина застряла в снегу
10 cоветов как выехать, если застрял в снегу на автомате Заезжая на сложный участок дороги, снизьте скорость, переключитесь на пониженную...
Что делать, если машина не заводится с автозапуска StarLine A91, А93, А94 почему не запускается двиг
Автозапуск в сигналке Starline A91 Dialog подключение, настройка, советы Охранная система Старлайн модели A91 существует в двух версиях: Starline A91...
Что заливать в ирригатор полости рта
А что, если зубной щетки недостаточно Сравниваем популярные ирригаторы Ведется много рассуждений о правильном уходе за зубами и полостью рта....
Adblock detector